THE ACTIVATION BY POTASSIUM OF THE SODIUM-CALCIUM CARRIER OF CARDIAC MITOCHONDRIA

M. CROMPTON, I. HEID+ and E. CARAFOLI+

Department of Biochemistry, University College, Gower Street, London WC1E 6BT and *Laboratory of Biochemistry, Swiss Federal Institute of Technology (ETH), Universitätstrasse 16, 8092 Zürich, Switzerland

Received 29 April 1980

1. Introduction

In 1976 it was reported that cardiac mitochondria contain a Na⁺-Ca²⁺ antiporter [1], and subsequent work has established that this carrier is present also in mitochondria of several other tissues [2-4]. The properties of the antiporter indicate that it is quite distinct from the carrier (uniporter) that catalyzes Ca²⁺ influx [5,6] and that its natural role is to catalyze the efflux of Ca²⁺ from mitochondria [1-3,5]. The simultaneous catalysis of Ca²⁺ flux by the uniporter and antiporter generates Ca²⁺ recycling across the inner membrane, and a steady state is attained when the activities of the two Ca²⁺ carriers are equal. [1,2,7,8].

It has been proposed that the function of the cycle in cardiac mitochondria is the control of the intramitochondrial free [Ca²⁺] in accordance with the regulatory requirements of certain dehydrogenases of the citric acid cycle [9,10]. However, to evaluate the capacity of the cycle to control the transmembrane distribution of Ca²⁺, and in particular the intramitochondrial free [Ca²⁺], it is clearly necessary to establish the factors that influence the activities of the uniporter and antiporter. This report presents evidence that the antiporter, but not the uniporter, is strongly activated by K⁺. Both the Na⁺-Ca²⁺ and Ca²⁺-Ca²⁺ exchange activities of the antiporter are affected.

2. Methods

2.1. Preparation of mitochondria

Mitochondria were prepared from female Wistar rat hearts, and their protein content was determined as stated in [1].

2.2. The measurement of Ca2+ fluxes

Mitochondria (containing 3 mg protein) were loaded with Ca^{2+} at $25^{\circ}C$ in 3 ml medium containing 120 mM choline chloride plus KCl (as stated in the legends), 10 mM N-2-hydroxyethyl piperazine N'-2-ethane sulphonate (Tris salt, pH 7.2), 3 μ g rotenone, 60 nmol $CaCl_2$ and 5 mM succinate (Tris salt). After 2–3 min, when almost all the Ca^{2+} had been accumulated, further uptake was stopped by the addition of 3 nmol ruthenium red, a specific inhibitor of influx [1,11].

One minute after ruthenium red had been added, Na⁺-Ca²⁺ exchange was begun by the addition of 10 mM NaCl, and the net efflux of Ca²⁺ was monitored with a Ca²⁺-selective electrode as in [1].

 Ca^{2+} – Ca^{2+} exchange was started by the addition of 20 μ M CaCl₂ 1 min after ruthenium red. When Ca^{2+} influx was measured, the CaCl₂ contained 0.1 μ Ci ⁴⁵Ca²⁺. When Ca²⁺ efflux was measured, the mitochondria were loaded with 0.1 μ Ci ⁴⁵Ca²⁺ of known specific activity. The time courses and initial rates of Ca^{2+} – Ca^{2+} exchanges were determined with the La³⁺-stop technique, detailed in [5].

3. Results and discussion

In the experiment reported in fig.1, cardiac mitochondria were preloaded with Ca^{2+} and then inhibited with ruthenium red to prevent Ca^{2+} flux via the uniporter [11]. At zero time in the figure net efflux of Ca^{2+} was induced by the addition of Na^{+} . Considerable evidence indicates that the Ca^{2+} efflux under these conditions is catalysed by a $Na^{+}-Ca^{2+}$ antiporter [1-3,5,6,8,9]. Fig.1 (upper two curves) shows that the Na^{+} -induced efflux of Ca^{2+} is stimulated ~ 2.4 - Volume 115, number 2 FEBS LETTERS June 1980

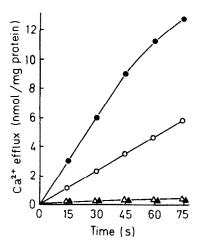


Fig.1. The stimulation of the Na⁺-induced efflux of Ca²⁺ from cardiac mitochondria by K⁺. The efflux of Ca²⁺ was measured (as in section 2) in the presence of ruthenium red and the following concentrations of NaCl and KCl: (\bullet) 10 mM NaCl, 15 mM KCl; (\circ) 10 mM NaCl, KCl absent; (\blacktriangle) 15 mM KCl, NaCl absent; (\blacktriangle) KCl and NaCl absent.

fold by 15 mM K⁺.

Fig.1 also shows the very slow loss of accumulated Ca²⁺ that occurs in the absence of added Na⁺. In [6] this Na⁺-independent efflux of Ca²⁺ was inhibited very poorly by lanthanides, in contrast to the Na⁺-dependent efflux, from which it was concluded that the Na⁺-independent efflux is not due to residual

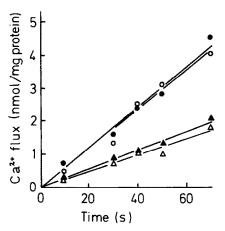


Fig. 2. The stimulation by K^* of the $Ca^{2+}-Ca^{2+}$ exchange across the inner membrane of cardiac mitochondria. The influx and efflux of Ca^{2+} (measured as in section 2) refer to the unidirectional influx and unidirectional efflux, respectively (where unidirectional influx minus unidirectional efflux equals net flux). (\circ) Ca^{2+} influx with 30 mM KCl; (\bullet) Ca^{2+} efflux with 30 mM KCl; (\bullet) Ca^{2+} influx with 6 mM KCl; (\bullet) Ca efflux with 6 mM KCl.

activity of the Na⁺-Ca²⁺ antiporter in the absence of Na⁺. It is evident from fig.1 that K⁺ does not change significantly the Na⁺-independent efflux.

The inability of K⁺ to promote Ca²⁺ efflux in the absence of Na⁺ indicates that K⁺ cannot substitute for Na⁺ as a substrate for the Na⁺-Ca²⁺ antiporter. The data suggest, therefore, that K⁺ activates, directly or indirectly, the Na⁺-Ca²⁺ exchange.

It seemed possible that K⁺ might affect the fluxes of Na⁺ that follow exchange of Na⁺ with Ca²⁺, and

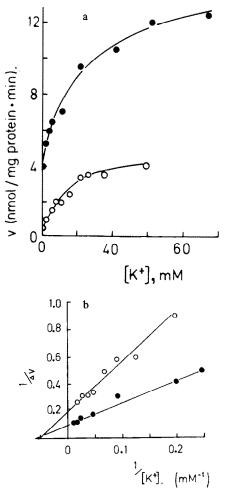


Fig. 3. The dependence of the initial rates of Na^+-Ca^{2+} and $Ca^{2+}-Ca^{2+}$ exchanges on the extramitochondrial $[K^+]$. (•) Na^+-Ca^{2+} exchange; (o) $Ca^{2+}-Ca^{2+}$ exchange. (a) The initial rates (ν) of Na^+ -induced and Ca^{2+} -induced effluxes of Ca^{2+} were determined as in section 2. (b) A double reciprocal plot of the increase in initial rates of the exchanges versus $[K^+]$. Each value $(\Delta \nu)$ is calculated from the data of fig. 3a, and is the difference between the velocities observed in the presence and absence of K^+ .

Volume 115, number 2 FEBS LETTERS June 1980

thereby activate the Na⁺-Ca²⁺ exchange indirectly. This possibility was checked by investigating the ability of K⁺ to activate Ca²⁺-Ca²⁺ exchange by the antiporter. The catalysis of 1:1 Ca²⁺-Ca²⁺ exchange by the antiporter in the presence of ruthenium red has been demonstrated [5]. The exchange is measured by following in parallel experiments the influx of ⁴⁵Ca²⁺ and the efflux of ⁴⁵Ca²⁺, both of known specific radioactivity [5].

Fig.2 shows the influxes and effluxes of Ca^{2+} on the addition of external Ca^{2+} (at t=0) to mitochondria preloaded with Ca^{2+} and inhibited with ruthenium red. The fluxes were measured with 30 mM K⁺ (upper two curves) and 6 mM K⁺ (lower two curves) present. At both [K⁺], the ratio of the rates of Ca^{2+} influx to Ca^{2+} efflux was close to 1, which indicates that a true Ca^{2+} — Ca^{2+} exchange is measured in both cases. The rate of Ca^{2+} — Ca^{2+} exchange is approximately doubled when the [K⁺] is increased from 6 mM to 30 mM.

The most straightforward explanation of the data of fig.1,2 is that K^+ combines with the antiporter and modifies its $Ca^{2+}-Ca^{2+}$ and Na^+-Ca^{2+} exchange activities. If this is correct, activation by K^+ should be a saturable phenomenon with a defined dissociation constant of activation. This prediction was investigated as reported in fig.3, which shows the activation of the antiporter as a function of $[K^+]$. Under these experimental conditions, K^+ maximally activates the Na^+-Ca^{2+} exchange \sim 3-fold and the $Ca^{2+}-Ca^{2+}$ exchange \sim 13-fold (fig.3a). A double reciprocal plot of the increase in activity of the two exchanges against the $[K^+]$ is given in fig.3b. Both plots are linear and yield essentially the same K_m value (17–19 mM).

Other experiments (not shown) have revealed that an increase in $[K^*]$ over 0–70 mM (maintaining constant ionic strength with choline chloride) does not detectably increase the rate of Ca^{2*} influx via the Ca^{2*} uniporter. The selective activation of the antiporter by K^* , therefore, provides a further distinction

between the uniporter and antiporter to those already noted [1,5,6] and underlines the existence of two distinct systems for Ca²⁺ transport in cardiac mitochondria.

At physiological $[K^+]$, the antiporter will be fully activated, and K^+ cannot be regarded as a regulator of the carrier. Nevertheless, the marked activation by K^+ must clearly be taken into account when conducting in vitro experiments designed to assess the in vivo capacity of the carrier to extrude Ca^{2+} .

Acknowledgements

This work was supported by grants from the Science Research Council (GR/B22581) and the Swiss National Science Foundation (3.282-0.78).

References

- Crompton, M., Capano, M. and Carafoli, E. (1976) Eur. J. Biochem. 69, 453-462.
- [2] Crompton, M., Moser, R., Lüdi, H. and Carafoli, E. (1978) Eur. J. Biochem. 82, 25-31.
- [3] Nicholls, D. G. (1978) Biochem. J. 170, 511-522.
- [4] Al-Shaikhaly, M. H. M., Nedergaard, J. and Cannon, B. (1979) Proc. Natl. Acad. Sci. USA 76, 2350-2353.
- [5] Crompton, M., Kunzi, M. and Carafoli, E. (1977) Eur. J. Biochem. 79, 549-558.
- [6] Crompton, M., Heid, I., Baschera, C. and Carafoli, E. (1979) FEBS Lett. 104, 352-354.
- [7] Nicholls, D. G. and Scott, I. D. (1980) Biochem. J. in press.
- [8] Nicholls, D. G. and Crompton, M. (1980) FEBS Lett. 111, 261-268.
- [9] Crompton, M. (1980) Biochem. Soc. Trans. in press.
- [10] Denton, R. M. and McCormack, J. G. (1980) Biochem. Soc. Trans. in press.
- [11] Moore, C. (1971) Biochem. Biophys. Res. Commun. 42, 298-305.